from dotenv import load_dotenv load_dotenv() import time from openai import OpenAI from datetime import datetime import config, debug, prompt, json """ 备注: 目前使用ollama部署的qwen2.5:32b-instruct-q5_K_M, 如果输入字符串过长(大致超过1000个字符或1500token)会因上下文窗口过短导致提示词被遗忘, 进而输出不合规定的结果! """ llm = OpenAI(base_url=config.LLM_BASE_URL, api_key=config.API_KEY) class entityExtractionProcess: def entity_extract(input_text): messages = [ {"role": "system", "content": prompt.ENTITY_EXTRACT}, {"role": "system", "content": f"今天的日期是:{str(datetime.today())}"}, {"role": "user", "content": f"{input_text}"}, ] timenow = time.time() response = ( llm.chat.completions.create( model=config.MODEL, messages=messages, temperature=0, max_tokens=128_000 ) .choices[0] .message.content ) print(f"本次输出花费时间:{time.time() - timenow} 秒") return json.loads(response)